Alien life? Bacteria ‘that had not been there’ found on ISS hull, Russian cosmonaut says

Living bacteria were found on the surface of the International Space Station (ISS), and they might have extraterrestrial origins, Russian cosmonaut Anton Shkaplerov said. The microorganisms will be studied further on Earth.

Shkaplerov, an ISS expedition flight engineer who will take his third trip to the ISS in December as part of the Expedition 54 crew, said that scientists found living bacteria while they were taking samples from the surface of the station. Speaking to TASS, he said that the microorganisms might have come from outer space.

“Bacteria that had not been there during the launch of the ISS module were found on the swabs,” Shkaplerov said. “So they have flew from somewhere in space and settled on the outside hull.” The cosmonaut added that the samples are currently being studied and seem to be safe.

 
© NASA

Shkaplerov said that some microorganisms from Earth also survived in a vacuum and differences in temperature from -150C to 150C.

These bacteria accidentally entered outer space during the ‘Test’ and ‘Biorisk’ experiments, in which special pads are installed on the ISS hull and left there for several years to determine how the material is affected by the conditions in space. 

However, traces of bacteria originating on Earth – from Madagascar – and plankton from the Barents Sea were earlier found during a ‘Test’ experiment in May. Scientists explained that they got there due to the ionosphere lift phenomenon, in which substances from our planet’s surface rise to the upper atmospheric layer. Following the discovery, Russian space agency Roscosmos along with other scientists suggested raising the upper border of the biosphere to 400 kilometers from the current altitude of 20 kilometers.

Heart failure is associated with loss of important gut bacteria

In the gut of patients with heart failure, important groups of bacteria are found less frequently and the gut flora is not as diverse as in healthy individuals. Data obtained by scientists of the German Centre for Cardiovascular Research (DZHK) provide valuable points of departure for understanding how gut colonisation is associated with the development and progress of heart failure. It has long been known that heart failure and gut health are linked. The gut, thus, has a worse blood supply in instances of heart failure; the intestinal wall is thicker and more permeable, whereby bacteria and bacterial components may find their way into the blood. Moreover, scientists know that the composition of the gut bacteria is altered in other widespread diseases such as type 2 diabetes. Against this backdrop, researchers at the DZHK site Hamburg/Kiel/Lübeck investigated whether and how the gut flora in patients with heart failure changes.

In order to do this, they analysed the gut bacteria in stool samples of healthy individuals and patients with heart failure. The project headed by Professor Norbert Frey of the University Hospital Schleswig-Holstein, Campus Kiel, was conducted in close cooperation with Professor Andre Franke's team at the Christian-Albrechts-Universität zu Kiel, which found that the sections of the bacterial genome deciphered the distinction of the microorganism. The results showed that a significantly lower proportion of different bacteria are found in the gut in patients with heart failure than in healthy controls. Individual important families of bacteria are significantly reduced. It is still unclear whether the gut flora is altered as a result of heart failure or whether it may be a trigger for this disease.

Influential factors: diet, medication, smoking

"Of course, other factors also affect the composition of our gut bacteria. We know that the gut flora of a vegan who starts eating meat changes within three days," explains associate professor Dr. Mark Lüdde of the University Hospital Schleswig-Holstein, Campus Kiel. For this reason, we asked the Kiel-based researchers of dietary habits beforehand. Individuals with an extreme diet, such as a vegan diet, were not allowed to participate in their study. Instead, they chose individuals with a standard diet comprising both meat and vegetables for both groups.

In addition to diet, medication also affect the gut flora. It was, therefore, important that the control group also took medicinal products that patients with heart failure must take routinely. Antibiotics could not have been administered for at least three months prior. Smokers were also included in both groups. All participants were from the same region and were the same age; gender distribution and BMI were equal in both groups.

Consequence or cause of the disease?

The observed pattern of the reduced genera and families of bacteria seems very characteristic of heart failure, which is why these results may be new points of departure for therapies. The differences between healthy individuals and those with heart failure, thus, came about mainly through the loss of bacteria of the genera Blautia and Collinsella, as well as two previously unknown genera that belong to the families Erysipelotrichaceae and Ruminococcaceae.

Other research projects have shown that the occurrence of Blautia curbs inflammations. Similarly, the genus Faecalibacterium is associated with anti-inflammatory mechanisms. It is, however, not only reduced in patients with heart failure. Since heart failure is accompanied by a chronic inflammation, one theory is that the gut flora fosters the systemic inflammation. Yet generally scientists currently believe that the gut flora changes as a consequence of heart failure. Lüdde and his colleagues believe it is plausible that an altered bacterial profile could also be a risk factor or an early disease marker for heart failure. This is supported by the recent characterisation of trimethylamine N-oxide (TMAO), a metabolic product of gut bacteria, as an independent risk factor for the mortality rate in patients with heart failure. Further investigations are scheduled to clarify the cause and effect of altered gut flora in patients with heart failure. The scientists anticipate obtaining new knowledge on how heart failure occurs and progresses.


How bacteria survive antibiotic treatment

Multiresistant bacteria Scientists around the world are working hard to win the battle against multi-resistant bacteria. A new publication from the BASP Centre, University of Copenhagen now presents how even sensitive bacteria often manage to survive antibiotic treatment as so-called 'persister cells'. The comprehensive perspective on this phenomenon may help to improve current options of drug treatment and could even inspire the discovery of novel antibiotics targeting these notoriously difficult-to-treat persister bacteria.

In the current issue of the journal Science, Alexander Harms and colleagues from the BASP Centre, Department of Biology, University of Copenhagen summarise newly discovered molecular mechanisms explaining how bacteria manage to survive antibiotic treatment and cause chronic and recurrent infections.

Post-Doc Alexander Harms explains: "This amazing resilience is often due to hibernation in a physiological state called persistence where the bacteria are tolerant to multiple antibiotics and other stressors. Bacterial cells can switch into persistence by activating dedicated physiological programs that literally pull the plug of important cellular processes. Once they are persisters, the bacteria may sit through even long-lasting antibiotic therapy and can resuscitate to cause relapsing infections at any time after the treatment is abandoned."

Using novel detection methods, recent work in the field has uncovered the molecular architecture of several cellular pathways underlying the formation of bacterial persisters -- and these results confirmed the long-standing notion that persistence is intimately connected to slow growth or dormancy. Bacterial persistence can therefore be compared to hibernation of animals or the durable spores produced by many mushrooms and plants.

Across many different bacteria, these programs are controlled by a regulatory compound known as "magic spot" that plays a central role in the persistence phenomenon. These important discoveries, many of which were accomplished by the BASP Centre, may in the future facilitate the development of improved drug treatment regimens and eventually lead to the development of novel antibiotics.


Subscribe to this RSS feed