NASA's Cassini Spacecraft Captures Stunning Photos of Saturn's Changing Seasons

NASA's Cassini spacecraft made new pictures of Saturn and the famous storm at its north pole on the second day of the planet's solstice, NASA reported.

Cassini observed how a huge storm has appeared and encircled Saturn over the last seven years of its mission. Scientists believe that such storms are influenced by seasonal effects of sunlight on Saturn's atmosphere.

"Reaching the solstice, and observing seasonal changes in the Saturn system along the way was a primary goal of Cassini's Solstice Mission," NASA's website reported.

Saturn's north-polar region in June 2013 and April 2017
Saturn's north-polar region in June 2013 and April 2017 / © Photo: NASA/JPL-Caltech/Space Science Institute/Hampton University

Basically, the spacecraft was able to follow the complete change of all seasons on Saturn, with the whole planet's system dramatically changing with the start of summer and the end of winter.

"The Saturn system undergoes dramatic transitions from winter to summer, and thanks to Cassini, we had a ringside seat," Dr. Linda Spilker, the scientific leader of the mission, was quoted as saying.

NASA: Cassini's First Fantastic Dive Past Saturn
 
Many of the things, which scientists know now, could have never been registered by Cassini if NASA had not decided to extend the mission. For example, five years ago, Cassini first "saw" how Saturn's atmosphere was covered with a giant hurricane at the beginning of autumn and how a haze of hydrocarbons appeared in the planet's atmosphere.

The main achievement of the Cassini mission was the discovery that geysers located on Saturn's sixth moon — Enceladus — can ejecthot water that is generally suitable for the birth and maintenance of life. This discovery urged NASA to consider sending another mission to Saturn and Enceladus in the future.

The Cassini space mission was launched in October 1997 and arrived at Saturn in July 2004. The mission has seen two extensions and is set to end on September 15, 2017. Its observations have generated hundreds of scientific articles.

Huge ‘potentially hazardous’ asteroid hurtling towards Earth

A huge 1km-wide asteroid is hurtling towards Earth, prompting astronomers to label it “potentially hazardous”. But don’t pack for Mars just yet – the giant space rock, ‘2014 JO25’, is expected to pass by our planet safely.

According to NASA the encounter on April 19 will be the closest the asteroid comes to Earth in 400 years, and no projected future encounters will be as close for at least another 480 years.

However, another fly-by is expected in 2091 and the space rock also makes regular close approaches to Mercury and Venus.

 
An asteroid of this size won't have as close an encounter with Earth for more than 10 years. "The next known flyby by an object with a comparable or larger diameter will occur when 800-meter-diameter asteroid ‘1999 AN10’ approaches within one lunar distance in August 2027," NASA said.

The asteroid was discovered by the Mt. Lemmon Survey in May 2014. Astronomers describe it as a “bright object” and believe it will be among the best targets for radar observations this year.

READ MORE: Risk of catastrophic asteroid impact ‘real’ – White House

‘2014 JO25’ has been designated as a potentially hazardous asteroid (PHA) by the Minor Planet Center. PHA’s are asteroids larger than 100 meters that can come closer to Earth than 7,495,839km (about 4,658,000 miles), which is equal to 19.5 ‘Lunar distances’.

Asteroid Hazards, Part 1: What Makes an Asteroid a Hazard?

Despite 2014 JO25’s designation as a PHA, projections predict it will pass by Earth at a safe distance of about 1.8 million km (4.57 lunar distances).

@BadAstronomer Pic of a 10-meter rock that passed inside the Moon’s orbit a couple of hours ago. Amazing we can find these things. http://www.virtualtelescope.eu/2017/04/02/near-earth-asteroid-2017-fu102-close-encounter-image-2-apr-2017/ 


 
 
 

Two other big asteroids, ‘2003 BD44’ and ‘1999 CU3’, which are both nearly 2km wide, will also pass by our planet shortly, however they won’t come as close as 2014.

Astrowatch report 1,781 PHAs were detected on Sunday, however – happily – none of them is on a projected collision course with Earth.

Oldest-ever fossils show life existed on Earth at its infancy - study

Ancient fossils discovered in Canada are “direct evidence” that life existed on Earth 4 billion years ago, scientists wrote in a newly-released study, believing the emergence of life could be simple enough to begin on other planets.

Researchers believe the microfossils – discovered in Canada's Nuvvuagittuq Supracrustal Belt, which hosts some of the oldest sedimentary rocks known on Earth – are between 3.77 billion and 4.29 billion years old.

The discovery has led scientists to believe that life was present during the infancy of the planet, which is thought to be around 4.57 billion years old.

If the dating is accurate, it would represent an “almost instantaneous emergence of life” after ocean formation, lead author Matthew Dodd said, as quoted by Reuters.

READ MORE World's oldest fossils unearthed (UCL)

The tiny microfossils were found to be half the width of a human hair and up to half-a-millimeter in length. Their appearance is of blood-red tubes and filaments, formed by ocean-dwelling bacteria that fed on iron.

The dating puts the fossils “within a few hundred million years of the acceleration of the solar system,” University College London Professor Dominic Papineau, who made the discovery, said in a video statement cited by AFP.

Even at the lower end of the range, “the microfossils we discovered are about 300 million years older” than any runners-up, Papineau said.

Locked inside white quartz structures, the microfossils were found in what were once warm-water vents on the ocean floor, most often in deep waters.

The finding has prompted scientists to hypothesize that such vents may have been some of the earliest habitable environments on the planet.

However, one of the researchers acknowledged skepticism about whether such fossils are biological in nature, or merely natural mineral formations.

“One of the big questions when it comes to early life studies is whether or not the organic carbon we find in these rocks is actually biological in origin,” Dodd said, as quoted by AFP.

Dodd and his colleagues used several methods to determine the answer to that question, including laser-imaging to analyze the minerals associated with the organic material.

They concluded that the presence of two minerals in particular – apatite and carbonite – provide strong evidence for life.

Moreover, the scientists noted that the microfossils’ structure closely resembles modern bacteria that dwell near iron-rich hydrothermal vents.

The possibility that the microfossils were formed by temperature and pressure changes as the sediment formed were also examined and excluded.

Perhaps the most intriguing piece of the research is that Dodd believes there’s no reason to rule out similar evidence of early life being found on other planets.

READ MORE: 500mn years old & boasting 30 legs: ‘Worm’ fossil offers insight into ancient species (VIDEO)

“We could expect to find evidence for past life on Mars 4 billion years ago,” Dodd said, stating that Earth and Mars had liquid on their surfaces at the same time.

“If life happened so quickly on Earth, then could we expect it to be a simple process that could start on other planets?” he said.

He admitted, however, that Earth could be “just a special case.”

The discovery represents a significant milestone, as the oldest microfossils previously reported were found in Western Australia and dated to 3.46 billion years old. However, some scientists say they are not biological in origin.

Researchers from various institutions, including the US Geological Survey, took part in the study. The results were published in the journal Nature on Wednesday.

NASA has discovered 7 Earth-like planets orbiting a star just 40 light-years away

This tiny star has 7 planets that potentially could be suitable for life.

The first step in finding life outside our own planet is to find a planet like our own: small, rocky, and at just the right distance from the star that liquid water could exist on its surface.

That’s why an announcement today from NASA is so exciting: The space agency, along with partners around the world, has found seven potentially Earth-like planets orbiting a star 40 light-years away.

“It’s the first time that so many planets of this kind are found around a same star,” Michaël Gillon, the lead author of the Nature paper announcing the discovery, said in a press conference. “The seven planets … could have some liquid water and maybe life on the surface.”

Three of the planets are directly in the star’s habitable zone, meaning water can mostly likely exist on the surface of them. One of them, Gillon said, has a mass “strongly to suggest a water-rich composition.” And it’s possible that the other four could have liquid water, too, depending on the composition of their atmospheres, the astronomers said.

 The planets “e,” “f,” and “g” — marked in green are directly in the “habitable zone” of this star system. NASA

The exoplanets orbit a star in the constellation Aquarius called Trappist-1. And it’s a solar system very different from our own.

For one, Trappist-1 is a tiny, “ultra-cool” dwarf star. It’s cool because it’s small: just about a tenth of the mass of our sun and about one-thousandth as bright. But its low mass allows its planets to orbit it very closely and remain in the habitable zone.

The distance at which the planets orbit Trappist-1 is comparable to the distance of Jupiter to its moons. All the planets are believed to be rocky, and are all believed to be around the size of Earth, give or take 10 to 20 percent.

The star’s dimness is actually what led to the discoveries of these planets. When astronomers search for exoplanets, they typically look for a temporary dimming of a star — an indication that a planet has passed in front of it. This method makes it hard to find small, rocky worlds orbiting big, bright stars. If the planets are too small, they’ll get washed out.

“Maybe the most exciting thing here is that these seven planets are very well suited for detailed atmospheric study,” Gillon said. The James Webb Space Telescope, set to launch in 2018, will have the ability to measure the chemical composition of exoplanet atmospheres. If the atmospheres contain telltale gases like ozone, oxygen, or methane, life could exist there. “We can expect that in a few years, we will know a lot more about these [seven] planets,” Amaury Triaud, another of the paper’s co-authors, said.

If this all sounds a bit familiar, it’s because astronomers announced three potentially habitable planets around Trappist-1 in May. Today’s reveal adds four more to the mix.

Right now, the astronomers are beginning to study the planets’ atmospheres with the telescopes they have. And from these observations, they feel fairly confident that the worlds are rocky. “For detailed characterization, we will need James Webb,” Triaud said.

In the meantime, we just have our imaginations to fill in the gap. This is an artist’s rendition of what the fifth planet in this bizarre solar system might look like. These planets are believed to be tidally locked to the star, each has a permanent day side and a permanent nice side. And because the planets are so close together, they’d appear in the sky like moons.

 This artist's concept allows us to imagine what it would be like to stand on the surface of the exoplanet Trappist-1f. Dream vacation? NASA/JPL-Caltech

The more Earth-like exoplanets astronomers find in the galaxy, the more they update their estimates of how many Earth-like planets could be out there. “For every transiting planet found, there should be a multitude of similar planets (20–100 times more) that, seen from Earth, never pass in front of their host star,” Nature reporter Ignas Snellen explains in a feature article. And the more exoplanets there are, the more likely it is that life exists on at least one of them.

“With this discovery we’ve made a giant, accelerated leap forward in our search for habitable worlds and life on other worlds potentially,” Sara Seager, a leading exoplanet expert at MIT, said during the announcement. This one star system, she said, gives astronomers many chances to look for life, and refine their understanding of exoplanets in small-star systems.

Also promising: Tiny, cool stars like Trappist-1 are some of the most common in the galaxy. Investigating them will likely yield more exoplanet discoveries. Which will help get us closer to finding places like Earth.

As NASA associate administrator Thomas Zurbuchen said, “Finding another Earth-like planet isn't a matter of if but when.“

Humans Are Totally Unprepared For A Potential Asteroid Strike, NASA Scientist Warns

Speaking at the annual meeting of the American Geophysical Union in San Francisco, Nuth said: “The biggest problem, basically, is there’s not a hell of a lot we can do about it at the moment,” according to The Guardian.

Despite the NASA planetary defence office having been established – with the aim to observe the skies for possible asteroid strikes – this will supposedly not give us a large enough window to begin a preventative mission.

In fact, it takes years to complete a ‘deflection’ operation – five to launch a spacecraft - and the most recent ‘near miss’ with Mars in 2014 was only noticed 22 months before impact.

Admittedly there is a very low chance of an earth impact in the next 100 years, approximately 0.01% according to NASA themselves, but Nuth said: “On the other hand they are the extinction-level events, things like dinosaur killers, they’re 50 to 60 million years apart, essentially.

“You could say, of course, we’re due, but it’s a random course at that point.”

The current plan of action is mass evacuation, but Nuth recommend that NASA build an interceptor rocket with periodic testing, alongside an observer spacecraft to stop catastrophic fireballs from hitting us.

However even if we were able to cut the action time in half, Nuth still says this would be a “hail-mary pass”.

Back in August, NASA sent a probe to an asteroid, Bennu, that could one day hit Earth and bring about our downfall. 

Speaking to the Sunday Times, Principal Investigator Dante Lauretta confirmed that in 2135 its believed Bannu will pass between the Earth and the moon, and could potentially leave a wake of destruction.

Scientists Wait To See If Probe Successfully Landed On Mars

After a seven-month voyage through space and a three-day cruise to approach Mars, the European Space Agency's Schiaparelli lander is getting ready for the final leg of its journey: a six-minute trip through the red planet's atmosphere.

It's the make-it-or-crash-land-it moment for the probe, which is designed to collect data on Mars' atmosphere and dust storms. If it succeeds, it would be Europe's first successful Mars landing.

Schiaparelli was expected to enter the atmosphere at 10:42 a.m. ET on Wednesday, and make its landing at 10:48.

"It may take some hours to get official confirmation that Schiaparelli has landed on the Red Planet," the ESA says.

The Two-Way

 
 
In the best-case scenario, we wouldn't know what happened right away. It takes 10 minutes for signals to travel between Mars and Earth, and observing the success or failure of the landing will be complicated.

There's a cooperative international "listening in" campaign, the ESA says, with multiple countries maneuvering their telescopes and satellites to try to pick up data about Schiaparelli's landing.

A telescope in India was attempting to catch a "very faint signal" straight from the lander to Earth for the earliest possible updates, ESA says. Those would be in real-time (with the 10-minute delay).

No signal was picked up, which wasn't a total surprise — and doesn't necessarily signal failure.

Now ESA's Mars Express spacecraft, which has been orbiting Mars for more than a decade, will offer the second chance at a signal from Schiaparelli. But the spacecraft can't listen to Schiaparelli and talk to Earth at the same time, so it will take approximately an hour and a half after landing for that data to reach scientists.

Several hours after the landing, scientists will have information from NASA's Mars Reconnaissance Orbiter, which will open a two-way connection with Schiaparelli when it flies overhead and sends that information back to scientists.

Finally, there's Schiaparelli's space-travel buddy, the Trace Gas Orbiter, which the probe separated from three days ago.

The TGO will be busy entering orbit today, but once it's finished with that, it will collect detailed information from Schiaparelli and beam it back to Earth. That should be available on Thursday.

If you'd rather not wait for the dispatch from reality, you could always watch the best-case scenario in animated form: ESA released a real-time visualization of what the landing should, ideally, look like.

YouTube

As NPR reported earlier this week, landing on Mars is a notoriously tricky proposition — the history of space exploration includes a long list of Mars-landing failures.

"No other country besides the U.S. has operated a probe on the surface," NPR's Rae Ellen Bichell notes. "To complicate things, NASA has forecast possible planet-wide dust storms."

The Schiaparelli probe is named after an Italian astronomer famous for mapping the surface of Mars. Along with the more prosaically-named Trace Gas Orbiter, it's part of the ExoMars program, a joint operation between ESA and Russia's space agency. As Rae reports, Schiaparelli "will collect information about things like wind, humidity, and electrical fields for as long as its batteries last — probably just a few days."

The next phase in the program is a 2020 mission to deliver a rover to Mars.

Earth-like planets in solar system ‘habitable zones’ to be photographed for 1st time

Scientists are planning to launch a new telescope capable of photographing Earth-like planets in a nearby solar system which could be home to alien life.

The privately-financed initiative, called Project Blue, hopes to take the first photo of a planet in the so-called ‘habitable zone’ – the area around a star in which life is able to exist.

Led by the US-based BoldlyGo Institute, a non-profit scientific organization, the project will focus on nearby solar system Alpha Centauri and aims to have built the telescope by 2020 at an estimated cost of $25 million to $50 million.

BoldlyGo Institute CEO John Morse, who was formerly director of astrophysics at NASA, described the proposed telescope as the “holy grail of exoplanet” research.

Morse said the project will focus on Alpha Centauri partly because it is close to the Earth, but also because there’s a greater chance of photographing a habitable planet.

The fact that you do have two stars [at Alpha Centauri], it’s like two coin flips,” Morse told Popular Science.

There’s four possible outcomes and only one of them is nothing, so we’re hoping that at least one of the stars will have terrestrial planets around it, and possibly both, which would be an amazing discovery.”

Although the solar system is near to Earth, such distance is relative to the vastness of the universe.

Alpha Centauri is a mind-boggling 4.22 light years away, which means it would take humans about 100 years to get there if traveling at a speed of 13,411 kilometers per second.

Project Blue hopes to photograph this enormous distance with a telescope about the size of a small washing machine and with a mirror only 50cm across.

The telescope will use a coronagraph to block out light from more distant stars, allowing the lens to capture clear photographs of planets that would otherwise be drowned out in the brightness of nearby stars.

Although still in its early stages, the project hopes to get cash support from project partners such as the SETI Institute and will also use crowdfunding to pay for initial design work.

Morse hopes the project will inspire future missions to study Earth-like planets.

If we discover a pale blue dot around one of the Alpha Centauri stars, the urgency to build larger facilities, to do more characterization of that and eventually hope to see weather patterns or mountain ranges or continents, we’ll see a lot more interest in doing that kind of thing,” Morse told Popular Science.

That’s the impact that we want this to have.”

Subscribe to this RSS feed

Havana